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LIMITED SERIES

The Medical College of Wisconsin’s 
FUSION curriculum includes 7 threads 
that are woven through the different 

phases of undergraduate medical education. 
Under the premise that an accurate and 

timely diagnosis is the cornerstone of medicine 
and that evidence informs clinical decision-
making, one of the seven threads – the “Critical 
Thinking in Medicine” thread – aims to unravel 
the diagnostic process and describe the funda-
mental components of evidence-based medi-
cine. In the first of a series of articles on this 
thread, we will outline the statistical thinking 
needed to differentiate clinical and statistical 
significance. 

In a subsequent article, we will introduce 
a story-like format to describe the statistical 
thinking needed to solve common problems 
encountered in clinical medicine, without 
memorizing a formula and without a calculator. 
For example, suppose a middle-aged woman 
undergoes routine screening mammography 
and is found to have a positive test. Assuming 
that the prevalence of breast cancer in such 
women is 0.8%, that mammography is 90% 

sensitive for detecting breast cancer, and that 
there is a 7% false-positive probability, what is 
the probability that the positive test represents 
breast cancer? The most common answer phy-
sicians give is “90%.” But, as you will see, it 
closer to 10%.1

Statistical thinking is at the heart of biosta-
tistics, which is perhaps the most frequently 
used basic science. In his excellent brief text, 
High-Yield Biostatistics, Epidemiology and 
Public Health, Anthony Glaser states, “There is 
perhaps no other area in USMLE Step 1 from 
which knowledge will be used every day by 
every physician, no matter what specialty they 
are in, and no matter what setting they are 
practicing in.”2

Thinking vs Statistics
Perhaps the first step in learning statistical think-
ing is to realize that the numbers, per se, are far 
less important than clinical judgment. In other 
words, thinking in context is more important 
than interpreting the statistics alone. Whether 
some difference between 2 treatments is sta-
tistically significant is a mathematical, proba-
bilistic judgment. However, deciding whether 
any difference between treatments is mean-
ingful – and important to patients – is a clinical 
judgement that does not involve mathemat-
ics. For example, suppose a new treatment for 
dementia becomes available and is supported 
by a large scientific study showing a highly 
statistically significant difference between sub-
jects who received the treatment versus pla-
cebo. Would this be a useful treatment? Should 

patients and other payors be willing to pay for 
it? The usefulness of such a therapy should 
depend far more on the patient’s values and 
preferences and how large and meaningful the 
difference is between those who received the 
treatment versus the placebo rather than the 
statistical significance of the difference. A small 
but statistically significant change in some cog-
nitive performance scale that is difficult to inter-
pret may not be clinically meaningful regardless 
of its statistical significance. 

Statistical significance is measured by the P 
value. The P value tells us how likely the dif-
ference between treatments – or even more 
extreme differences – could have occurred due 
to chance alone if there is truly no difference 
between the treatments. The assumption of 
“no difference” between the treatments is com-
monly called the “null hypothesis.” Whether a 
difference between treatments is statistically 
significant can certainly be helpful in determin-
ing whether the treatment may be useful, but 
there are other important considerations.

Testing a Null Hypothesis
To highlight these considerations, we will 
describe a very simple application of testing 
a null hypothesis and determining statistical 
significance. Suppose a friend gives you a coin 
that she says “lands on heads far more often 
than tails” (analogous to her saying that she 
has discovered a treatment that is more ben-
eficial than another). How can we test such 
claims? The first step is to state a null hypoth-
esis. In this case, our null hypothesis would be 
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to assume that the coin is “fair” – that is, we will 
assume that it is just as likely (50-50 chance) to 
land on heads as tails. Then, we proceed to do 
an experiment, we flip the coin some number of 
times and see how it lands. If it lands on heads 
far more often than we would expect by chance 
alone, at some point we might be willing to 
“reject” the null hypothesis that the coin is fair 
(and accept an alternative hypothesis, eg, that 
the coin is not fair). However, how often does 
the coin need to land on heads for us to reject 
the null hypothesis of no difference? Let’s 
assume that the coin lands on heads 4 times 
in a row. Is that good enough to assume that 
it is not “fair”? If the coin is fair, the probability 
of it landing on heads 4 times in a row is sim-
ply the product of the probability of it landing 
on heads each time which is: ½ x ½ x ½ x ½ 
which is 1/16 or 0.0625. Is that good enough? 
What if the coin landed on heads 9 times in a 
row? If the coin is fair, the probability of that 
is (1/2)^9 which is 0.00195 or about 2 chances 
in 1000. Are you ready to declare that the coin 
is not fair? What if your life depended on this 
question? Would this be enough evidence to 
bet your life on the next flip of the coin? Most 
people would probably want stronger evidence 
before betting their life on this coin. 

The need to assess the strength of the evi-
dence is the first lesson in understanding P 
values. Again, the P value is the probability of 
getting these or even more extreme results if 
there is no difference in the treatments being 
considered (heads or tails in this example). 
The P value that you select to allow you to 
declare a difference “statistically significant” 
should depend on the clinical situation, not just 
whether it is above or below the “traditional” 
level of statistical significance, commonly 0.05. 
A significance level of 0.05 means that there 
is a 1 in 20 chance of seeing a difference that 
large or even larger, if there is truly no differ-
ence between the treatments. That may be 
good enough if the clinical question being con-
sidered is “routine.” You may even be satisfied 
with a P value of 0.10 if you are considering 
a treatment for a life-threatening disease for 
which no treatment currently exists. On the 
other hand, if you are considering suggesting 
a potentially toxic therapy with many possible 
side-effects to a patient – perhaps to treat a 
life-threating cancer – you may demand a level 

of statistical significance far greater than 1 in 
20 (0.05) before you are willing to declare the 
difference statistically significant and to sug-
gest this treatment for a patient. In essence, 
we consider that the level selected for statisti-
cal significance should depend on the clinical 
situation and not simply the “traditional level” 
of 0.05. 

What is the Origin of the Traditional  
P value Level of 0.05?
The traditional significance level of 0.05 was 
originally suggested by R. A. Fisher, who per-
formed agricultural experiments in England 
starting in the 1920s. In 1925 he suggested that 
“We shall not often be led astray if we draw a 
conventional line at 0.05…”3 He certainly did not 
imply that 0.05 should be considered a Rubicon 
that establishes a result as important regardless 
of the clinical situation. It is unfortunate that the 
word “significant” is associated with any given 
number since this word implies a level of impor-
tance that may not be appropriate.

Testing Our Null Hypothesis
Returning to our coin-flipping experiment, sup-
pose we state our null hypothesis that the coin 
is “fair” (ie, no difference between heads and 
tails) and pose an alternative hypothesis that 
the coin is not fair. We then specify a signifi-
cance level of less than 0.0001 to denote sta-
tistical significance (because we want to be 
really sure). Then we flip the coin 100 times and 
find that it lands on heads a total of 75 times 
out of 100 (in any order, not necessarily all in a 
row, of course). What is the probability of this 
happening, if the null hypothesis is true? That 

probability is about 0.000000287, or about 3 
chances in 10 million; we therefore reject our 
null hypothesis and accept the alternative 
hypothesis that the coin is not fair. Recall that 
the probability of 9 heads in a row was about 2 
in 1000. With 100 flips, it is far less likely to get 
a total of 75 heads, even though many people 
would think 9 heads in a row seems perhaps 
more impressive. This example demonstrates 
why computing P values is valuable: we 
humans are not good at judging probabilities 
using our “gut instincts.” For example, if you 
flip what you think is a fair coin and it lands on 
heads 4 times in a row, you are likely to think 
you are “due” for a tails. Well, you aren’t. That’s 
the kind of thinking that keeps casinos open 
(the Gambler’s Fallacy). The probability of get-
ting a tail on the fifth flip is 50%, just as it is for 
each of the other flips. Any “imbalance” of flips 
early on (for example 4 heads in a row) is not 
corrected but rather “diluted” as the flipping 
continues.4 This is a very common misconcep-
tion and is one of the reasons that computing 
P values is worthwhile. We humans have many 
misconceptions about probability.

Courtroom Analogy
Hypothesis testing is analogous to what hap-
pens (or should happen) in a courtroom. Our 
null hypothesis is analogous to assuming 
that the defendant is innocent. We then see 
evidence presented in court. If we are trying 
someone accused of robbing a bank and sev-
eral witnesses identify the defendant as the 
guilty party, and the police find the money from 
the bank in his apartment, the jury will prob-

Box: Key Terms 

Null Hypothesis: A statement proposing that there is no difference between the treatments being considered.

P value: The probability that results obtained or more extreme results could have occurred due to chance 
alone assuming that the null hypothesis is true.

Type I error: Rejecting the null hypothesis when it is true. The null hypothesis is really true, there is no differ-
ence but you erroneously rejected that hypothesis. A false alarm.

Type II error: Failing to reject the null hypothesis when it is wrong. There is a difference, but you failed to re-
ject the null hypothesis of no difference. You missed the boat.

Alpha (α): The probability of a type I error, a false alarm (mnemonic: alpha and alarm both start with “a”).

Beta (β): The probability of a type II error, you missed the boat (beta and boat both start with “b”).

Power: 1 – β; 1 minus the probability of missing the boat is the probability that you got on the boat. This is the 
ability of a study to designate a difference of some size between treatments as statistically significant at some 
given level.

Number Needed to Treat (NNT): The number of subjects who would need to be treated over some time pe-
riod in order to prevent one bad event or cause one “good” event.
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ably determine that such evidence would be 
very, very unusual if the defendant were indeed 
innocent. So they then reject the idea that he is 
innocent and declare him guilty.

Hypothesis Testing Errors
As in the courtroom, there is the possibility of 
convicting the innocent and letting the guilty go 
free. We “convict the innocent” when we claim 
that some result is statistically significant when 
it really is not. The probability of this happening 
is the level that we set for determining statisti-
cal significance, eg, 0.05. This is also denoted 
as “alpha” (α). So, the probability of claiming a 
difference when there is really no difference 
is alpha, also called a “Type I error.” There are 
many confusing ways of stating a Type I error, 
but we prefer to state it as a false alarm. You 
claimed there was difference, but there really 
wasn’t (false alarm).

On the other hand, it is also possible to fail 
to find a difference that is truly there, analo-
gous to letting the guilty go free. The robber 
committed the crime, but the evidence wasn’t 
sufficient to reject the assumption of inno-
cence. If a study is small, there is a greater 
chance of failing to find an important difference 
between treatments; the probability of this is 
“beta” (β). This is also called a “Type II error,” 
but we prefer to think of it as missing the boat. 
There was a difference there but you missed it, 
because your study wasn’t powerful enough to 
pick it up. Power is the ability of a study to find 
a difference if it is present. So, given that beta 
is the probability of “missing the boat” then 1 
minus beta equals the probability that you got 
on the boat –that is the “power” of the study.

Large Study, Small Study
Large studies are likely to find small differences 
to be statistically significant. For example, sup-
pose that 545 out of 1000 subjects receiving 
“treatment A” improved, whereas only 500 out 
of 1000 subjects improved with “treatment B.” 
This small difference (54.5% vs 50.0%) is statis-
tically significant at the 0.05 level (P = 0.0488, 
chi-square test). On the other hand, suppose 
that 9 out of 10 (90%) improved with Treatment 
A versus only 5 out of 10 (50%) with treatment 
B in a small study. With this small study, a large 
proportionate difference (40%) was not statis-
tically significant at the 0.05 level (P = 0.1409, 
chi-square test).

Don’t Believe All Headlines
When the headline of a study includes the 
words “no significant difference,” always ask 
yourself, how big was that study and what was 
its power to pick up a clinically meaningful dif-
ference? On the other hand, when a large study 
touts that treatment A is significantly better 
than treatment B, always ask yourself, how big 
is the difference? Would this size difference be 
clinically meaningful to me and my patients? 
How many patients would I have to treat in 
order to see 1 patient benefit? (Number needed 
to treat [NNT] is the subject of a future column.)

These considerations highlight the differ-
ence between statistical significance, which is 
a mathematical benchmark, and clinical signifi-
cance, which is determined by the patient, the 
clinician, and the clinical situation.

Acceptance Region
One final point about the P value is worth 
emphasizing. The P value is a dichotomous 
indicator, ie, it either is or is not statisti-
cally significant. Either the study found the P 
value was below the significance threshold 
or it was above it. The “acceptance region” 
provides much more information. The accep-
tance region provides a range of values that, 
if the null hypothesis is true, we could expect 
our data to fall. For example, if we expect 
50 heads in 100 flips of the coin, probability 
theory (the subject of another future column) 
tells us that there is a 95% chance that we 
will get between 40 and 60 heads. If we get 
fewer than 40 or more than 60, that is unusual 
and, in the long run, will only happen 5% of 
the time with a fair coin. This provides much 
more information than just an “up” or “down” 
decision using the P value. In a future column, 
we will discuss how to calculate acceptance 
regions and a related concept called the 
confidence intervals. At this point, it is worth 
understanding that both acceptance regions 
and confidence intervals provide more infor-
mation than the P value because they provide 
a range within which you would expect your 
data to reside.

Rethinking The Evidence
One of the most exciting aspects of medical 
science is having our longstanding beliefs and 
practices shown to be wrong with new evidence. 
The most important thing that evidence should 

do is to cause us to rethink what we believe. Our 
intuition can fool us into making erroneous con-
clusions. New evidence, while potentially upset-
ting, can and should challenge our preexisting 
beliefs. Fortunately, statistical thinking allows us 
to evaluate new evidence and clearly discuss 
it with patients in a way that incorporates their 
unique values and preferences.

Conclusion
In summary, we use experiments (clinical tri-
als) to decide which treatment is better starting 
with the assumption (the null hypothesis) that 
both are the same. If the experiment provides 
results that would be very unlikely if the treat-
ments were the same, we can then “reject” 
the idea that the treatments are the same with 
some given level of confidence (alpha). Most 
important is whether a difference between 
treatments is clinically significant rather than 
just statistically significant. Clinical significance 
is determined by using clinical judgment and 
talking with the patient and identifying their val-
ues and preferences when applying the results 
of evidence. This principle of evidence-based 
medicine is far more important than simply 
achieving a statistical benchmark. With a large 
enough study, trivial differences can be “made” 
statistically significant. On the other hand, small, 
underpowered studies can fail to find important 
differences. It is critical to know what you would 
consider a clinically important difference and 
what the study power is to find that difference. 

In the next column in this series, we’ll dis-
cuss risk: absolute risk, relative risk, and the 
“number needed to treat.” This is perhaps the 
most important skill needed to communicate 
medical information in a manner that informs 
rather than confuses patients.
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