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INTRODUCTION
Lead is an environmental neurotoxicant 
of public health importance that may 
result in lead poisoning.1 Lead poisoning 
remains a public health priority that has 
harmful effects on the brain development 
of children and adults.2 Lead exposure also 
has demonstrated adverse effects, such as 
neurobehavioral deficits;3 cardiovascular, 
immune, and behavioral development;4 

and adverse birth outcomes.5 Although 
the Centers for Disease Control and 
Prevention (CDC) set a reference blood 
lead level (BLL) cutoff of ≥ 3 .5 μg/dL to 
indicate lead poisoning, no BLLs are safe.6 

In Wisconsin, children under 6 years of 
age are considered lead poisoned at a cap-
illary or venous BLL ≥ 5 μg/dL.7 Studies 
consistently show an association between 
low BLL, such as 10 μg/dL or less, and 
impaired cognitive function in children.8 

The effects of childhood lead exposure can 
persist throughout a lifetime and result in 
negative long-term consequences in adult-
hood, such as cognitive decline, aggressive 

behavior, sociobehavioral problems,9 and communication and lan-
guage difficulties.10 Lead-based paint is the main source of child-
hood lead exposure, especially in older houses.11 Other lead poi-
soning sources include manufacturing products, such as children’s 
toys containing lead, mining waste, lead dust,12 and leaded water 
service lines/pipes,13 as well as leaded gasoline phased out by the 
Environmental Protection Agency (EPA).14 

Reporting blood lead test results to Wisconsin public health 
officials is mandatory.15 From 2014 through 2017, 6.9% of 
children under 6 years of age in Milwaukee had a BLL above 
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Table 1. Summary of Child/Maternal Variables by Maximum Blood Lead Test Result

  BLL Not Tested Max BLL <5 μg/dL Max BLL ≥5 μg/dL
  N = 2720 N = 10 618 N = 7595 P value

School year, n (%)    < 0.001
 2010 – 2011 588 (13.87) 1759 (41.49) 1893 (44.65) 
 2011 – 2012 521 (12.78) 1970 (48.31) 1587 (38.92) 
 2012 – 2013 553 (13.18) 2163 (51.55) 1480 (35.27) 
 2013 – 2014 528 (13.07) 2186 (54.11) 1326 (32.82) 
 2014 – 2015 530 (12.10) 2540 (58.00) 1309 (29.89) 

Gender, n (%)    < 0.001
 Male 1350 (12.62) 5303 (49.56) 4047 (37.82)  
 Female 1370 (13.39) 5315 (51.94) 3548 (34.67)  

Race, n (%)    < 0.001
 African American/Black 1425 (11.67) 5707 (46.72) 5083 (41.61)  
 White 650 (22.53) 1702 (58.99) 533 (18.47)  
 Hispanic 441 (9.25) 2586 (54.23) 1742 (36.53)  
 Other 204 (19.17) 623 (58.55) 237 (22.27)  

Area deprivation index    < 0.001
 Mean (SD) 124.52 (21.45) 127.62 (21.28) 136.55 (19.40)  
 Median (Q1, Q3) 126.82 131.06 139.39 
  (107.48, 140.62)  (111.17, 142.40) (126.60, 151.46)
 Minimum, maximum 62.53, 169.26 40.19, 169.26 65.56, 169.26  
 Missing 149 845 663  

Food service indicator, n (%)    < 0.001
 No 654 (20.38) 1989 (61.98) 566 (17.64)  
 Yes 2066 (11.66) 8629 (48.69) 7029 (39.66)  

Special education, n (%)    < 0.001
 No 2327 (13.53) 9023 (52.47) 5847 (34.00)  
 Yes 393 (10.52) 1595 (42.69) 1748 (46.79)  

English language learner n (%)    < 0.001
 No 2557 (13.54) 9576 (50.70) 6753 (35.76)  
 Yes 163 (7.96) 1042 (50.90) 842 (41.13)  

Attendance days       < 0.001
 Mean (SD) 145.99 (28.06) 148.79 (23.23) 146.48 (26.02)  
 Median (Q1, Q3) 155.00 155.00 154.00
  (144.00, 159.00)  (146.50, 159.00) (143.00, 159.00)
 Minimum, maximum 1.00, 187.00 2.00, 204.00 3.00, 195.00  
 Missing 1332 5015 4339  

Gestational age (weeks), n (%)       0.002
 23 – 25 5 (8.06) 32 (51.61) 25 (40.32)  
 26 – 32 56 (11.79) 218 (45.89) 201 (42.32)  
 33 – 34 42 (9.50) 205 (46.38) 195 (44.12)  
 35 – 37 388 (12.73) 1536 (50.41) 1123 (36.86)  
 38 – 43 2229 (13.18) 8627 (51.03) 6050 (35.79)  
 Missing 0 0 1  

Small for gestational age,  n (%)       0.017
 No 2657 (13.03) 10 364 (50.84) 7365 (36.13)  
 Yes 63 (11.58) 252 (46.32) 229 (42.10)  
 Missing 0 2 1  

1-minute Apgar,  n (%)       0.062
 0 – 3 50 (12.25) 189 (46.32) 169 (41.42)  
 4 – 6 135 (11.96) 555 (49.16) 439 (38.88)  
 7  – 10 2519 (13.05) 9834 (50.95) 6947 (35.99)  
 Missing 16 40 40  

5-minute Apgar,  n (%)       0.598
 0 – 3 3 (12.50) 13 (54.17) 8 (33.33)  
 4 – 6 10 (9.43) 50 (47.17) 46 (43.40)  
 7 – 10 2591 (12.92) 10 158 (50.64) 7312 (36.45)  
 Missing 116 397 229  

Abbreviations: BLL, blood lead level; max, maximum; Q, quarter. continued on next page

5 μg/dL, decreasing to 6.3% from 2018 
through 2021.15 During 2010 to 2015, 
the lead poisoning threshold for chil-
dren under 6 was set at 10 μg/dL by 
the Wisconsin Department of Health 
Services (DHS), aligning with CDC 
guidelines at that time.16 In 2012, after 
the CDC lowered this level to 5 μg/dL 
to improve detection of elevated BLLs, 
DHS adopted the same threshold.17 

Average childhood BLLs are dispro-
portionately higher among children in 
predominantly minority populations who 
are living in socioeconomically disadvan-
taged communities18 in racially segregated 
neighborhoods.18 The State of Wisconsin 
addresses childhood lead poisoning pre-
vention efforts through CDC funding to 
ensure blood lead testing and reporting, 
to enhance BLL surveillance, to improve 
linkage to support services, and to sup-
port case management and environmen-
tal investigations by local health depart-
ments.20

Primary prevention of childhood lead 
exposure is essential to mitigating the 
negative effects of BLL on children. This 
includes increasing awareness among par-
ents and caregivers of all children – espe-
cially those exposed to lead. Secondary 
prevention approaches include appropriate 
provider lead testing, case management, 
surveillance reporting and referral to and 
through appropriate service providers,21 (ie, 
community outreach22) and environmen-
tal investigations provided by local health 
departments. In Wisconsin, children’s lead 
testing typically occurs at pediatricians’ 
offices, Special Supplemental Nutrition 
Program for Women, Infants, and Children 
(WIC) clinics, and public health depart-
ments – particularly during well-child visits 
or in high-risk areas.23 However, data on 
the percentage of children with a primary 
care provider or consistent well-child vis-
its for lead testing between ages 1 and 5 
years are limited. One-third (35.2%) of 
Medicaid enrolled children were not tested 
for lead, suggesting that all children were 
not receiving appropriate testing for BLL.24 
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Table 1 continued. Summary of Child/Maternal Variables by Maximum Blood Lead Test Result

  BLL Not Tested Max BLL <5 μg/dL Max BLL ≥5 μg/dL
  N = 2720 N = 10 618 N = 7595 P value

Mother’s age at birth,  n (%)    < 0.001
 12 – 18 277 (9.13) 1333 (43.92) 1425 (46.95)  
 19 – 34 2176 (13.36) 8416 (51.69) 5690 (34.95)  
 35+ 267 (16.52) 869 (53.77) 480 (29.70)  

First trimester  2036 (13.06) 8240 (52.86) 5313 (34.08)  
 No prenatal care 41 (12.93) 133 (41.96) 143 (45.11)  
 Second trimester 523 (12.54) 1897 (45.48) 1751 (41.98)  
 Third trimester 109 (14.16) 296 (38.44) 365 (47.4)  
 Missing 11 52 23  

Number of prenatal visits       < 0.001
      Mean (SD) 10.80 (4.04) 10.88 (3.85) 9.95 (4.07)  
      Median [Q1, Q3] 12.00 (9.00, 13.00) 11.00 (9.00, 13.00) 10.00 (7.00, 12.00)  
      Min, Max 0.00, 40.00 0.00, 50.00 0.00, 50.00  
      Missing   65 29

Abbreviations: BLL, blood lead level; max, maximum.   
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This highlights the challenge of childhood 
BLLs, which may be undetected as this 
recent evidence suggests.

Studies consistently have demonstrated 
the association between higher BLLs and 
poorer academic achievement in stan-
dardized reading and math tests among 
school-aged children.25,26 However, a need 
exists to inform childhood lead preven-
tion efforts implemented by the City of 
Milwaukee Health Department (MHD) 
and health care centers on the magnitude 
and significance of lead effects on academic 
performance. Since academic performance 
is mostly determined by other (non-lead) 
factors, the objective of this study was to 
examine the association between lead expo-
sure and the academic performance of 
third-grade children in Milwaukee while 
controlling for the effects of confounding 
variables.

METHODS
Study Setting and Data Sources
In 2016, Milwaukee County had the high-
est prevalence of elevated BLLs (≥5 μg/dL) 
at 10.8% among children under 6 years of 
age who were tested for lead versus levels 
statewide of 5.0% and those of 9 other 
counties with local health department 
jurisdictions ranging from 5.1% to 8.4%.27 
Similarly, during 2018 to 2021, 6.3% 
of children under 6 years in Milwaukee 
County were poisoned with a BLL ≥5 μg/
dL when compared to 3.6% in Wisconsin 
overall.28 Therefore, we analyzed existing 
data on 20 933 third-grade students who 
attended Milwaukee Public Schools (MPS) 
during 2010 to 2015 and who had individ-
ual health-related data collected through 
the MHD in Milwaukee, Wisconsin. 

The MHD dataset contains blood lead 
testing data reported to the Wisconsin 
Childhood Lead Poisoning Prevention 
Program of a child’s most recent confirma-
tory (venous) test, which follows an elevated 
screening (capillary) test. If no confirma-
tory test for the child is available, the most 
recent screening test result is reported. We 
included data that did not have blood lead 
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Table 2. Regression for Math and Reading Standardized Scores

   Standardized Scores

   Math – Model I  Reading – Model II
   Coefficient (95% CI) P value Coefficient (95% CI) P value

Maximum blood lead level (μg/dL)   < 0.001   < 0.001
  < 5  Reference  Reference  
 Not done  -0.70 (-1.01 to -0.38)  -0.62 (-0.94 to -0.31) 
 5 – 9 -0.65 (-0.91 to -0.40)  -0.94 (-1.19 to -0.68) 
 10 –19 -0.84 (-1.21 to -0.48)  -1.64 (-2.01 to -1.27) 
 20+ -1.29 (-1.93 to -0.64)  -2.26 (-2.91 to -1.62) 

School year < 0.001    < 0.001
  2010 – 2011  Reference  Reference  
 2011 – 2012 -0.49 (-0.81 to -0.17)  -0.4 (-0.72 to -0.08) 
 2012 – 2013 -0.36 (-0.68 to -0.04)  -0.11 (-0.43 to 0.21) 
 2013 – 2014 -0.63 (-0.96 to -0.31)  -0.72 (-1.05 to -0.39) 
 2014 – 2015 -0.78 (-1.13 to -0.44)  -0.92 (-1.26 to -0.57) 

Test administration period   < 0.001   < 0.001
 Fall  Reference   Reference 
 Winter 4.64 (4.57 to 4.72)  3.59 (3.51 to 3.67) 
 Spring 7.88 (7.77 to 7.98)  5.81 (5.70 to 5.91) 

Gender   < 0.001   < 0.001
 Male  Reference  Reference  
 Female -0.72 (-0.93 to -0.52)  1.04 (0.83 to 1.24) 

Race    
 Black or African American Reference < 0.001 Reference < 0.001
 White 4.46 (4.06 to 4.85)  3.29 (2.89 to 3.69) 
 Hispanic 2.71 (2.31 to 3.10)  1.83 (1.44 to 2.22) 
 Other 3.66 (3.10 to 4.22)  2.75 (2.19 to 3.32) 

Gestational age in weeks   < 0.001   < 0.001
 38+  Reference   Reference 
 23 to 25 -2.65 (-4.61 to -0.68)  -0.63 (-2.58 to 1.33) 
 26 – 32 -2.16 (-2.84 to -1.47)  -1.43 (-2.12 to -0.74) 
  33 – 34 -0.66 (-1.35 to 0.04)  -0.31 (-1.01 to 0.39) 
  35 – 37 -0.33 (-0.61 to -0.05)  -0.32 (-0.6 to -0.03) 

1-minute Apgar   0.941   0.468
 7 – 10  Reference   Reference 
 0 – 3 -0.12 (-0.85 to 0.61)  0.37 (-0.36 to 1.09) 
 4 – 6 -0.03 (-0.48 to 0.42)  0.19 (-0.27 to 0.64) 

Mother’s age at birth   < 0.001   < 0.001
 19 – 34  Reference  Reference  
 12 – 18 -0.66 (-0.95 to -0.37)  -0.66 (-0.96 to -0.37) 
 35+ 0.27 (-0.12 to 0.66)  0.69 (0.30 to 1.07) 

Mother’s number of prenatal visits 0.06 (0.03 to 0.08) < 0.001 0.06 (0.03 to 0.08) < 0.001
(continuous)

Mother cigarette use during pregnancy    < 0.001   < 0.001
 No  Reference  Reference  
 Yes -0.52 (-0.81 to -0.22)  -0.91 (-1.21 to -0.62) 

Food service indicator  < 0.001  < 0.001
 No  Reference  Reference  
 Yes -2.64 (-2.98 to -2.31)  -2.62 (-2.96 to -2.29) 

Special education indicator  < 0.001  < 0.001
  No Reference   Reference  
 Yes -6.34 (-6.61 to -6.07)  -8.91 (-9.19 to -8.64) 

English language learner  0.998  < 0.001
 No Reference  Reference 
 Yes 0.001 (-0.44 to 0.44)  -2.92 (-3.36 to -2.48) 

Attendance days (continuous)  0.03 (0.03 to 0.04) < 0.001 0.03 (0.02 to 0.03) < 0.001
among available

continued on next page

results in our analyses.29 We first merged 
data from the MHD birth certificate files 
and lead exposure files, then merged these 
data with MPS standardized math and 
reading scores. Math and reading scores 
for each third-grade student were linked to 
their corresponding BLL and birth certifi-
cate data. Measures of Academic Progress 
(MAP) tests are purposely designed to be 
comparable from year to year in order to 
track children’s academic performance over 
time.29 

This research obtained ethical approval 
from the Medical College of Wisconsin 
Human Research Review Board. Both 
MPS and MHD data were obtained from 
DataShare, a secure, integrated data sys-
tem that links and deidentifies data across 
multiple sectors to support research and 
analysis in public health, public safety, 
education, and related areas.30 DataShare 
was established as a collaboration across 
multiple partner agencies to enhance the 
use of data to inform decisions to improve 
the health and safety of individuals and the 
community.

Study Measures
Student characteristics included in our 
analyses were as follows: gender (female 
or male), race (African American, White, 
Hispanic, Other), gestational age catego-
rized into week groups (23 – 25, 26 – 32, 
33 – 34, 35 – 37, 38 – 43), birth weight, 
small for gestational age designation (no, 
yes), 1-minute and 5-minute Apgar scores 
(score categories 0 – 3, 4 – 6, and 7 – 10), 
food service indicator measured as yes/no 
to receipt of free/reduced lunch, special 
education status (no, yes), and English lan-
guage learner status (no, yes). Our contin-
uous variables were the number of third-
grade attendance days and the number 
of prenatal visits attended by the mother 
during pregnancy. Other parental char-
acteristics included mother’s age at birth 
(12 – 18, 19 – 34, or 35+ years). To account 
for the neighborhood effect, area depriva-
tion indices were calculated for the census 
tracts at each student address whose com-
putation is described in prior literature.31 
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Lead testing data were obtained from the 
MHD, including dates and results for all 
tests on record from birth to third grade. 
Students were grouped into lead exposure 
categories based on the highest observed 
BLL: < 5, 5 – 9, 10 – 19, and ≥20 μg/dL; 
students without any blood lead testing 
information on record were grouped into 
a separate category.

Statistical Analysis
Student academic performance outcomes 
included reading and math Rasch UnIT 
scale (RIT) test scores taken during the 
fall, winter, and spring trimesters of third grade. All test scores 
were standardized to a mean of 50 and standard deviation (SD) of 
10 prior to analysis. All study variables were described using the 
mean, SD, median, and range for continuous variables and fre-
quency and percentage for categorical variables. The frequency of 
missing values was reported for each variable. Variables were sum-
marized both overall and stratified by lead exposure groups. Child 
and parental characteristics were compared between lead exposure 
categories using ANOVA for continuous variables and chi-square 
tests for categorical variables. Standardized reading and math test 
scores were modeled using mixed effects linear regression includ-
ing a school-specific random intercept and a repeated effect for 
school trimester (fall, winter, spring) within student using an 
autoregressive correlation structure of first order. Model covariates 
were selected a priori based on clinical expertise and data availabil-
ity. The global models were presented without subsequent model 
selection procedures. The regression models were fitted for each 
reading outcome separately and included multiple predictors: lead 
exposure group, school year, trimester, and all child and mater-
nal characteristics. All statistical analyses were performed using R 
software version 3.6.0 (R Core Team, R Foundation for Statistical 
Computing, Vienna, Austria). All P values were two-sided, and 
those < 0.05 were considered statistically significant. No adjust-
ments were made for multiple testing.

RESULTS
Table 1 describes the characteristics of children and their mothers 
stratified by BLL. A slightly higher proportion of males (37.8%) 
show elevated BLL (≥ 5 μg/dL) compared to females (34.7%). 
Conversely, more females (51.5%) had BLLs below 5 μg/dL com-
pared to males (49.6%). In terms of availability of BLL test results, 
a higher percentage of females (13.4%) had no BLL test results, 
compared to 12.6% of males. Mothers’ mean number of prenatal 
care visits were higher when children’s BLL was < 5 μg/dL (mean 
10.8, SD ± 3.9) and BLL was not tested (mean 10.7, SD ± 4.1) ver-
sus children with BLL ≥5 μg/dL (mean 9.9, SD ± 4.1) at P < 0.001

From 2010 to 2015, the proportion of children with BLLs 

Table 2 continued. Regression for Math and Reading Standardized Scores

   Standardized Scores

   Math – Model I  Reading – Model II
   Coefficient (95% CI) P value Coefficient (95% CI) P value

Attendance data availability   < 0.001  < 0.001
 Available Reference  Reference 
 Unavailable 3.74 (2.76 to 4.73)  2.79 (1.81 to 3.78) 

ADI (continuous) among available -0.02 (-0.02 to -0.01) < 0.001 -0.02 (-0.03 to -0.02) < 0.001

ADI availability    < 0.001   < 0.001
 Available Ref    Ref 
 Unavailable  -2.75 (-3.64 to -1.85)  -3.03 (-3.93 to -2.13) 

Abbreviations: ADI, area deprivation index.
Models I and II are adjusted linear regression models that controlled for potential confounders in Table 2.

below 5 μg/dL increased from 41.5% to 58.0%, while the propor-
tion of children with BLLs of 5 μg/dL or higher decreased from 
44.7% to 29.9% over the same period. In addition, from 2010 to 
2015, the percentage of children with no BLL test results declined 
slightly from 13.9% in 2010-2011 to 12.1% in 2014-2015. 

As shown in the Figure, the children’s math test scores changed 
by different lead exposure levels and over the 3 school-year sea-
sons. On average, third-grade math scores increased over the 
course of the school year from the fall to winter and winter to 
spring trimesters. In all 3 seasons, the highest median math 
RIT scores were observed consistently in children with the low-
est lead levels (<5 μg/dL) and children whose BLLs were not 
tested. This was followed by lower median math RIT scores 
at 5-9 μg/dL and 10-19 μg/dL BLLs, respectively. The lowest 
median math RIT scores were seen in children with the highest 
(≥ 20 μg/dL) lead levels in the fall, winter, and spring seasons. 
Similar trends were observed for reading scores in the Figure.

Results of the adjusted linear regression model for the inde-
pendent association between math standardized score and maxi-
mum BLL while controlling for potential confounding factors are 
shown in Table 2. Among children with a maximum BLL ≥ 20 μg/
dL, each unit increase in BLL is associated with a 1.29 decrease 
in standardized math scores. This association was statistically sig-
nificant (P < 0.001) when compared to the decrease in standard-
ized math scores among children with a maximum BLL < 5 μg/
dL. Similarly, among children with a maximum BLL of 10-19 μg/
dL, each unit increase in BLL is associated with a 0.84 decrease in 
standardized math scores, and among those with a BLL of 5-9 μg/
dL, each unit increase is associated with a 0.65 decrease in stan-
dardized math scores – all with statistical significance (P < 0.001) 
when compared to the decrease in standardized math scores 
among children with a maximum BLL < 5 μg/dL after adjusting 
for potential confounders.  

Table 2 also shows the adjusted linear regression model for the 
independent association between standardized reading scores and 
maximum BLL while controlling potential confounders. Among 
children with a maximum BLL ≥ 20 μg/dL, each unit increase 
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in BLL is associated with a 2.26 decrease in standardized read-
ing scores. This association was statistically significant (P < 0.001) 
when compared to the decrease in standardized reading scores 
among children with a maximum BLL < 5 μg/dL. Similarly, 
among children with a maximum BLL level of 10-19 μg/dL, each 
unit increase in BLL is associated with a 1.64 decrease in stan-
dardized reading scores, and among those with BLLs of 5-9 μg/
dL, each unit increase is associated with a 0.94 decrease in stan-
dardized reading scores – all with statistical significance (P < 0.001) 
when compared to the decrease in standardized reading scores 
among children with a maximum BLL < 5 μg/dL after adjusting 
for potential confounders. 

DISCUSSION
This study revealed 2 main findings. First, most children (58.3%) 
in third grade had a maximum BLL < 5 μg/dL, while 3.0% had a 
maximum BLL of 20 μg/dL or higher. Second, our results suggest 
that having a BLL ≥ 20 μg/dL was a significant independent risk 
factor for lower math and reading scores compared to children 
with a BLL < 5 μg/dL after controlling for potential confounding 
factors.

Although most children in Milwaukee had a recorded BLL 
< 5 μg/dL, there are still children who are exposed to very high 
BLLs (> 20 μg/dL). These finding align with a prior Wisconsin 
CDC report showing that 5% of children tested had lead poison-
ing at the CDC cutoff of ≥ 5 μg/dL.27 DHS surveillance reports 
showed an increase in children tested for lead, with lead poison-
ing rates rising slightly from 4.4% to 5.0% between 2014 and 
2016.27 The ongoing childhood lead poisoning crisis dispropor-
tionately affects communities in Milwaukee due to socioeconomic 
and racial inequities.32,33 For example, a previous study found that 
Milwaukee students had equal proportions of lead-exposed and 
nonexposed individuals, whereas in Racine, three quarters of stu-
dents had no lead exposure.26

Lead poisoning remains an environmental justice issue that 
perpetuates disparities in health outcomes, even at low BLLs.34 

Communities most affected by lead exposure usually consist of 
minority populations, with children in low-income households 
and often residing in rental properties within economically dis-
advantaged ZIP codes.35,36 For example, in our study, the major-
ity of children (66.9%) with BLLs above 5 μg/dL were African 
American, food insecure, and their mothers were in their late 
third trimester (38-40 weeks) at birth. Multiple factors are impli-
cated in lead poisoning in Milwaukee; however, age of housing is 
one of the most important factors linked to the risk of elevated 
BLL. Before 2006, nearly all incident cases of lead poisoning in 
Milwaukee were among children who lived in houses constructed 
prior to 1950. Older houses are associated with the use of lead-
based paints, dust, and old water lateral supplies, which increases 
predisposition of children to lead and their harmful effects. 
Children living in socioeconomically disadvantaged neighbor-

hoods are more likely to have greater exposure to lead, hence lead 
poisoning.37 This finding highlights the importance and need to 
strengthen community-based lead prevention strategies targeting 
older homes with children at-risk for childhood lead exposure in 
Milwaukee. 

The second key finding showed a significant association 
between BLL and both math and reading scores in third-grade 
students in Milwaukee. These findings are in line with prior lit-
erature that demonstrated an inverse relationship in between BLL 
and end-of-grade examination and standardized intelligence scores 
of school-going children.26,38 A recent study showed that although 
BLL had a detrimental effect on both fourth-grade reading and 
math scores, racial residential segregation specifically augmented 
the negative effect of elevated BLLs on reading test scores among 
non-Hispanic Black children compared to non-Hispanic White 
children.39 This implies that environmental lead exposure may 
result in high BLLs, which has detrimental cognitive effects on 
children. It is worth noting that the timing (early childhood) and 
dosage of lead exposure may be related to long-term mental health 
effects, such as cognition and intellectual impairment in adult-
hood.40 This suggests a potential longer susceptibility period to 
environmental lead exposure.

Study Implications
No lead levels are safe; therefore, building a lead-safe environment 
for all children requires deliberate and decisive policy action that 
addresses the sources of lead exposure. In Milwaukee, paint and 
dust remain the primary sources of lead exposure, followed by lead 
in drinking water. Recently, the Wisconsin Department of Natural 
Resources estimated that replacing the current 229 000 private lat-
erals containing or galvanized with lead would cost from $620 
million to $966 million.41 A new proposed rule by EPA, the Lead 
and Copper Rule Improvements (LCRI), would accelerate the 
rate at which existing lead pipes will be replaced to 2037.42 Policy 
efforts to address this challenge included $30 million in funding 
through the federal bipartisan infrastructure law to replace lead 
service lines and eliminate lead pipe replacement costs to residen-
tial property owners.43

From a clinical perspective, DHS recommendations in 2000 
of universal childhood lead testing44 for all children in Milwaukee 
and Racine and universal testing for all children in Wisconsin in 
2024 could address the missingness of BLL in our data, which 
may allow for better estimation of lead exposure and its impact 
on school-going children in the MPS system. More complete data 
containing BLLs for MPS, Medicaid, and non-Medicaid students 
may better inform state strategies to educate affected populations, 
which is key to lowering lead poisoning’s burden. These findings 
guide community-based interventions like educating individuals 
and highlight the importance of ongoing lead surveillance and 
reducing primary sources of lead exposure.

Lead prevention interventions that need strengthening, such 
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as the lead outreach program in primary care health centers, can 
be a potential source of referrals and education while the state-
funded Lead Safe Homes program45 may increase environmental 
investigations and abatement to partner organizations. It is worth 
noting that ongoing lead prevention programs in Wisconsin are 
implementing door-to-door home visits to conduct educational 
sessions on lead exposure reduction, such as distributing water fil-
ters, faucet replacement, home-based lead testing, and follow-up 
of lead poisoned children. 

The CDC currently recommends routine BLL testing for all 
young children – particularly those at higher risk – to prevent and 
mitigate the effects of lead exposure.46 Public health agencies, such 
as the WDHS, advocate for universal lead testing in high-risk 
areas like Milwaukee to identify elevated BLLs early.44 Research 
increasingly shows that even low BLLs negatively affect cognitive 
development and academic performance, especially in reading and 
math.26,39 To further address lead exposure risks, the EPA’s recent 
LCRI proposal47 mandates replacement of all lead service lines 
within 10 years, lowering the lead action level from 15 μg/dL to 
10 μg/dL, enhancing tap water sampling protocols, and requiring 
public transparency on lead service line locations. These initiatives 
align with our research findings and underscore the urgent need 
for lead-safe environments to support children’s academic success 
and overall well-being.34

For research, leveraging multi-institutional datasets to 
inform childhood lead prevention activities has been under-
scored. Our findings have highlighted the potential to pro-
spectively examine long-term effects of childhood lead expo-
sure to inform prevention efforts in Milwaukee and other 
communities. Our key study strength was the robustness of 
our analysis, using longitudinal data merged from MPS and 
MHD datasets and analyzing data on over 20 000 third-grade 
students. Additionally, our findings are generalizable to urban 
communities; however, it is likely for lead poisoning to be a 
public and environmental issue in rural settings too. 

Standardized testing as a measure of academic performance 
has faced criticism for its inherent limitations and potential 
biases, especially in diverse and underresourced districts like MPS. 
Studies indicate that standardized tests may disadvantage English 
language learners, students with individualized education plans or 
Section 504 protections for persons with learning disabilities, and 
students from various socioeconomic backgrounds due to cultural 
bias and language barriers.48 Additionally, standardized tests may 
not fully capture a student’s academic progress or abilities, over-
looking essential factors such as progression through grades, high 
school matriculation rates, or support needs, which are often more 
indicative of long-term success. These limitations are particularly 
pronounced in Milwaukee, where schools face funding shortages 
and high needs across certain ZIP codes, amplifying disparities in 
test preparation and performance.49

Our study findings should be interpreted in light of some limi-
tations. First, it is possible that unavailable variables in our dataset 
could be correlated with both lead exposure levels and academic 
performance, such as prenatal cocaine or other drug exposures, 
neighborhood violence exposure, parental IQ, and secondhand 
smoke exposure during childhood. This study also identifies 
covariates as intervention targets that pediatricians or primary care 
providers should be more alert about as potential risk factors for 
high BLL. Such factors to target include late prenatal care, young 
maternal age, children in special education, and food insecurity. 
Parental health education is needed to improve prevention and 
early abatement efforts prior to lead testing.

Second, selection bias may have occurred. Our data may 
not be representative of third graders in the MPS system dur-
ing 2010-2015 due to the following: (a) the data being a con-
venience sample, (b) the population being limited to individuals 
with health-related data with the MHD, (c) pediatric BLL test-
ing among the Medicaid population may be low in Wisconsin24 

despite CDC mandatory universal lead testing requirements, (d) 
no recommendations during 2010-2015 for pediatric universal 
lead testing for the non-Medicaid children in Milwaukee, and (e) 
approximately 20% of our final study population did not have 
test results. Additionally, measurement error may have occurred, 
although standardized tests taken during 2010- 2015 are intended 
to be comparable. Finally, this study did not examine the impact 
of high- versus low-performing schools on standardized testing as 
a potential modifying or interacting factor.

The missing test results for 20% of our study population likely 
arise from health care access barriers, affecting data completeness 
and possibly underestimating lead exposure’s effects. This gap adds 
some uncertainty to our findings, so conclusions require cautious 
interpretation. This untested group may face a uniquely high risk 
of elevated lead levels due to socioeconomic and environmental 
factors and are more likely to lack health care access, as shown 
by their higher deprivation and food insecurity levels (Table 1). 
Wisconsin’s universal testing policies in Milwaukee and now state-
wide aim to close this gap, enhancing data accuracy and the assess-
ment of the impact of lead exposure on Milwaukee children. 

CONCLUSIONS
Although most children had BLLs below 5μg/dL, some had very 
high BLLs. Higher BLLs were associated with lower math and 
reading scores among children in Milwaukee. The implications of 
surveillance to detect blood lead in children are significant and 
timely for policy action to strengthen childhood lead prevention 
strategies in Milwaukee amd other urban and rural settings
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