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LIMITED SERIES

W  hat is evidence-based medicine? 
What are the different levels of 
evidence? Is a testimonial for 

some treatment considered evidence? How do 
we know when we have sufficient evidence to 
draw sound conclusions? For example, is there 
sufficient evidence to conclude cigarette smok-
ing causes lung cancer? How can we apply evi-
dence to the individual patient? These are the 
key questions that we will explore in this last 
part of our series.

What is “Evidence-Based Medicine?” 
By the early 1980s, evidence in medicine was 
mounting and physicians asked, “How do I 
sift through the heap of evidence?” Thus, evi-
dence-based medicine pioneer David Sackett 
introduced the concept of critical appraisal – or 
the systematic evaluation of clinical research 
evidence to assess relevance, validity, and 
applicability to patient care. As it turns out, 
the term “evidence-based medicine” was an 
extension of critical appraisal and was used by 
David Eddy in the late 1980s1 and popularized 

by Gordon Guyatt and colleagues in a sentinel 
publication in 1992.2 

When the term “evidence-based medi-
cine” came into use, many health care profes-
sionals were offended by it, thinking that we 
have always used evidence in the practice of 
medicine. In 1980, I (RAC) clearly recall a situa-
tion that I thought represented the use of evi-
dence, but, in retrospect, it did not. It was late 
one Sunday night in the third year of medical 
school when I was called to a patient’s bed-
side, and my resident told me to put a naso-
gastric tube into “Mr. Smith” and irrigate his 
stomach with iced saline to treat his bleed-
ing gastric ulcer. I recall being happy to do 
this because I thought that iced saline would 
cause arterioles to constrict, stopping the 
bleeding. I also had great confidence in what-
ever my resident told me to do (“eminence-
based” medicine). However, I didn’t realize 
that no randomized controlled study had ever 
shown this approach to be beneficial for treat-
ing bleeding gastric ulcers. Now, I recognize 
what I did was because of my understanding 
of pathophysiology (arterioles bleeding that 
could constrict in the face of iced saline) and 
“expert opinion” (my resident’s order). Such 
a patient would be treated much differently 
today because of evidence showing that a 
bacterium, Helicobacter pylori, contributes to 
ulcer formation and that an antibacterial regi-
men and gastric acid control are much more 
effective treatments. It is surprising that much 
of what we still do in medicine today is based 

on pathophysiology and expert opinion rooted 
in tradition, eminence-based medicine, or 
pathophysiologic rationale rather than high-
quality evidence from randomized controlled 
clinical trials.3

Pyramid of Evidence
Evidence in medicine has been likened to a 
pyramid, with the highest quality evidence at 
the top and the lowest quality on the bottom. 
At the top are systematic reviews including one 
or more meta-analyses of several well-done 
clinical trials all studying the same outcomes. 
Below systematic reviews are randomized 
controlled clinical trials (which vary in quality), 
followed by prospective epidemiologic studies 
and retrospective studies (observational stud-
ies), then basic research, and finally, expert 
opinion, case studies, and case reports (clini-
cal experience). Note that “testimonials” from 
individual users of a treatment are not included 
in this list.

Randomized controlled trials are the “gold 
standard” in clinical evidence because when 
a treatment is randomly and blindly allocated 
(allocation-concealed) to subjects, and when 
neither the subjects nor the clinicians know 
who received which treatment (double blind), 
the only difference between the groups is the 
treatment in question. Other factors that could 
influence the outcome, such as age, sex, race, 
bias on the part of the investigators, patient 
expectations, and other confounding factors, 
are all randomly distributed between the two 
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treatment groups, leaving treatment allocation 
as the only difference. Furthermore, analyzing 
all participants in a randomized controlled trial 
according to their original group assignment—
regardless of what occurs after randomiza-
tion—is known as an intention-to-treat analysis, 
and it strengthens the validity of the study. 
When such trials are combined in a valid meta-
analysis, statistical power is increased and con-
clusions are strengthened.

Interventional Studies
Broadly speaking, clinical trials can be divided 
into interventional and observational studies 
according to whether the investigators are 
doing something (intervening) or observing, 
letting “nature take its course.” Interventional 
studies include randomized controlled studies, 
non-randomized studies, and non-inferiority 
studies. Non-randomized studies are some-
times conducted to allow compassionate use 
of a new treatment. Non-inferiority studies 
are conducted to determine whether some 
new treatment is not worse than a standard 
treatment by more than some certain amount. 
These studies are conducted more often today 
when it would be unethical to compare a new 
treatment with placebo when a well-estab-
lished treatment is widely available. It is also 
important to demonstrate that a new treat-
ment, which may have some specific advan-
tages, is not inferior to the standard treatment 
with respect to important side effects, such as 
cardiac adverse effects.

Observational Studies
Observational studies frequently are subdivided 
into case-control, cohort, and cross-sectional 
studies. Case-control studies begin by identify-
ing “cases,” ie, those who meet some illness 
definition versus controls who do not meet the 
definition. Then, various “exposures” are identi-
fied to determine whether one or more expo-
sures are more likely to have occurred in those 
who are cases versus controls. For example, if 
all the individuals who acquired norovirus on a 
cruise ship slept in a specific area of the ship and 
none of the controls did, that would be impor-
tant evidence to consider when determining the 
cause of the outbreak. Case-control studies are 
valuable when studying rare diseases.

Cohort studies begin with “exposed” and 
“unexposed” groups that are followed forward 
in time to determine who develops a given dis-
ease of interest. Cohort studies can be done 
prospectively (such as the Framingham study4) 
or “historically” as when a group of exposed 
people is identified via health records and then 
evaluated again at some future date to deter-
mine which of the “exposed” and “unexposed” 
developed disease. Cohort studies are use-
ful when the exposure of interest is rare (eg, 
asbestos exposure).

Cross-sectional studies assess the preva-
lence of an exposure—such as COVID vacci-
nation—and an outcome—such as hospitaliza-
tion—at a single point in time. Because data 
are collected simultaneously, these studies 
can determine only the prevalence of exposure 
among those with and without the outcome. 
Prevalence reflects both the incidence and 
duration of a condition (prevalence = incidence 
× duration). As a result, individuals with longer 
disease duration are more likely to be captured 
in cross-sectional studies, since duration sig-
nificantly influences overall prevalence.

How Do We Decide Which Statistical 
Test to Use?
Over the past 100 years, many statistical 
techniques have been developed. How do 
we decide which of these techniques is most 
appropriate to evaluate the evidence we plan 
to collect? It is obviously not appropriate to run 
every statistical test we can think of and then 
report the one with the lowest P value—a prob-
lem called multiple comparisons that inflates 
the type I error rate. The evaluation plan for 
our data should be determined before the first 
subject is enrolled into a study.

What Type of Study Are You 
Planning?
The first consideration is what question you are 
trying to answer. From there, you can ask what 
type of study will best answer that question. 
For example, if you want to know if exposure 
“x” increases the risk of outcome “y,” then a 
cohort study design will answer that ques-
tion. Does your question require you to design 
a retrospective study? If so, certain statistical 
measures, such as the odds ratio, will be most 

appropriate, comparing the odds of disease in 
groups with various exposures. 

Are you planning a prospective study? If so, 
then the relative risk can be calculated since 
you will be collecting “incidence” data, and 
you can compare the incidence of disease in 
exposed versus unexposed groups.

Do you seek to know if a new interven-
tion improves an outcome compared to exist-
ing standard of care interventions? If so, then 
a randomized controlled clinical trial would 
provide the strongest evidence to answer the 
question. Furthermore, if you intend to have 
“time-to-event” as an outcome measure, such 
as the time between entry into the study until 
some “cardiac event” occurs, you will want to 
consider using the Kaplan-Meier method for 
estimating survival functions (comparing who 
does and who does not develop disease) and 
perhaps comparing the hazard rates for vari-
ous treatments using Cox Proportional Hazards 
analysis.5 The hazard rate (discussed in part 
2 of this series) reflects how likely a given 
event is to occur. The higher the hazard rate 
the lower the survival rate, similar to a teeter 
totter.6 When the hazard rate is high, the sur-
vival rate is low and vice versa. To recap: the 
Kaplan-Meier method estimates the probability 
of “survival” (not having an event), and the haz-
ard ratio represents the ratio of the hazard in 
one group (such as the treatment group) versus 
another group (such as the control group).

What Type of Data Will You Have?
The type of data you plan to collect—regard-
less of study design—directly influences the 
statistical tests you can appropriately use. 
Ask yourself if the data will be numerical or 
categorical. If numerical, is it continuous (eg, 
systolic blood pressure measured to 3 deci-
mal places) or discrete (eg, achieving a blood 
pressure target: yes or no)? If categorical, is it 
nominal (eg, blood type: A, B, AB, O) or ordinal 
(eg, cancer stage I to IV)? When working with 
ordinal data, it is important to choose statistical 
methods that preserve the natural order of the 
categories (Table 1).

How Do You Determine Sample Size?
Finally, once you have decided which statistical 
test to use to evaluate your data, how do you 
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determine an adequate sample size? Although 
the full methodology is beyond the scope of 
this discussion, sample size calculations are 
influenced primarily by 4 factors (Table 2). 

First, consider the minimum difference 
between groups that you consider clinically 
meaningful. The smaller this difference, the 
larger the sample size you will need to detect 
it. Conversely, if you aim to detect a very large 
difference, a smaller sample may suffice.

Second, consider the alpha level (α)– the 
probability of a “false alarm” (type I error). The 
smaller you set alpha, the larger the sample 
size required, because you’re demanding 
stronger evidence to declare a result statisti-
cally significant. 

Third, decide an acceptable beta level 
(β) – the probability of “missing the boat” (type 
II error). A smaller beta (eg, 10%, corresponding 
to 90% power) requires a larger sample size 
than a higher beta (eg, 20%, or 80% power), 
because greater power increases your ability to 
detect a true difference. 

Fourth, consider the precision of your out-
come measurement. More precise measure-
ments – such as blood pressure recorded to 3 
decimal places via arterial line – reduce variabil-
ity and allow smaller differences to be detected 
with fewer participants. In contrast, less precise 
methods – such as using a blood pressure cuff 
accurate to only +/- 2 mmHg – increase variabil-
ity and require a larger sample size to detect 
the same effect. 

Statistical Pitfalls
Scientific studies can encounter numerous 
challenges – from choosing the right partici-
pants to correctly analyzing data. This discus-
sion will highlight 2 major concerns.

Bias
Bias is any effect tending to produce results that 
depart systematically from the true values.7(pp10) 
Bias must be systematic and not random. If it 
were random, it would have no overall effect, 
since one group would be affected as much as 
any other. 

A famous example of bias comes from the 
work of Abraham Wald.8 Wald, a Hungarian 
mathematician who escaped the Holocaust 
and later supported the Allied war effort in the 

United States, was tasked with improving air-
craft survivability. The US Army Air Force col-
lected extensive data on where bullet holes 
were found on planes that returned safely from 
bombing runs over the English Channel. After 
analyzing these data, Wald famously asked a 
crucial question: Where were the bullet holes 
on the planes that didn’t return? 

Wald concluded that armament should be 
increased in those areas – because the planes 
that came back showed where they could sus-
tain damage and still fly home. Stated differ-
ently, the planes that made it back to England 
just demonstrated where an airplane could 
take a hit and still make it back to base. This 
is a great example of survivorship bias: focus-
ing only on surviving examples can lead to 
misleading conclusions. Survivorship bias is 
just one of many biases that can affect studies-
-especially observational ones – where biases 
are not evenly distributed between treatment 
groups.

Confounding 
Confounding is a special type of bias. A con-
founder is a factor that distorts the apparent 
magnitude of the effect of a study factor on 
risk.7(pp21) Such a factor is a determinant of the 
outcome of interest and is unequally distributed 
among the exposed and unexposed groups. 
For example, in 1973, a study associated coffee 
drinking with myocardial infarction (MI).9 At that 

time, smokers were more likely to drink coffee 
than nonsmokers. Since smoking is a cause of 
MI and because it was unequally distributed in 
the exposure groups (coffee drinkers and non-
coffee drinkers), it gave the illusion that coffee 
drinking was linked to MI.

In general, confounding is controlled by 
“stratification,” an analysis technique beyond 
the scope of this discussion. In essence, the 
data are divided into “strata” with and without 
the putative confounder and then reanalyzed 
to see if the original relationship still exists (eg, 
coffee drinking and MI).

Association, Correlation and Causation
Association, correlation, and causation have 
distinct and specific meanings, yet often they 
are confused or used interchangeably, leading 
to misunderstanding and misinterpretation of 
study results.

Association
An association means that events are occur-
ring more often together than expected by 
chance.7(pp5) This does not imply, however, that 
one event causes the other.

Correlation
Correlation measures the strength and direc-
tion of a linear relationship between two 
variables.7(pp23) For example, when one vari-
able increases, the other tends to increase as 
well, forming a pattern that fits a straight line. 

Table 1. Types of Data

Data Type	 Subtype	 Description	 Example

Numerical	 Continuous	 Can take any value within a range	 Blood pressure (eg, 132.7 mmHg)
	 Discrete	 Countable values; no intermediate	 Reached blood pressure goal (yes/no)
		  values

Categorical	 Nominal	 Unordered categories	 Blood group (A, B, AB, O)
	 Ordinal	 Ordered categories	 Cancer stage (I, II, III, IV)

Table 2. Factors to Consider When Determining Sample Size

Factor	 Description	 Effect on Sample Size

1. Clinically meaningful difference	 Smallest outcome difference	 Smaller differences → larger sample 		
	 worth detecting 	 size
2. Alpha (α) – Type I error	 Probability of a false positive	 Smaller α → larger sample size
	 (eg, 0.05 vs 0.001)
3. Beta (β) – Type II error	 Probability of a false negative; 	 Lower β (higher power) → larger 		
	 Power = 1 – β 	 sample size
4. Measurement precision	 How accurately the outcome is	 Greater precision → smaller sample 		
	 measured 	 size
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The correlation coefficient quantifies the linear 
relationship. However, two variables may be 
related without a linear pattern. For instance, 
the velocity of a falling object is related to the 
height from which it was dropped, but the rela-
tionship is nonlinear due to acceleration from 
gravity. Importantly, correlation does not imply 
causation. Two things may appear to be related, 
but that does not imply one causes the other. 

Causation
What does it mean to state that something 
causes something else? What does the term 
“cause” mean? Perhaps this can best be 
described with a story.

One of us (RAC) was married several years 
ago and brought a nice alarm clock into our 
home, which was in a high-rise condo. Every 
day at 5:30 AM, the alarm went off. When it 
went off in the summer months, the sun was 
rising. It was a nice clock, but the clock did not 
cause the sun to rise. Nevertheless, there was 
a strong correlation between the alarm going 
off and the sun coming up during the summer. 
Now, suppose in December when the alarm 
went off, I became upset because the sun was 
not rising and, as a result, threw the alarm 
clock out the window (of the high-rise condo), 
and it fell to the ground and broke into 100 
pieces. Did I cause the alarm clock to break by 
throwing it out the window? 

Thinking about this more carefully, was 
tossing it out the window a necessary cause 
(that must be present for the outcome to 
occur)? No, I could have broken the alarm clock 
any number of creative ways, such as hitting it 
with a hammer or throwing it against the wall. 
Therefore, throwing it out the window was not 
a necessary cause.

Was throwing it out the window a sufficient 
cause (that alone can produce the outcome)? 
It was not, since in December in Wisconsin it 
could have landed in a snowbank and not been 
damaged at all. Therefore, throwing it out the 
window was not a sufficient cause for breaking 
the alarm clock.

Instead, it was a contributory cause (that 
increases the likelihood of the outcome to 
occur). I contributed to breaking the clock by 
throwing it out the window. In medicine, when 
we say one factor causes another, we usually 

mean it is a contributory cause – one that plays 
a meaningful role. Generally, for a cause to 
warrant study and intervention, it must be sig-
nificant enough to justify taking action.

“Criteria” for Causation
How can a contributory cause be determined? 
In 1965 Sir Austin Bradford Hill presented 9 cri-
teria for determining causation in medicine (eg, 
smoking and the development of lung cancer):10
1.	 Strength. The stronger an association, the 

more likely it is to be causal. For example, 
doctors in England who smoked in the early 
1950s were up to 30 times more likely to 
develop lung cancer.

2.	 Consistency. The same association was 
observed across all settings. 

3.	 Specificity. This criterion implies a one-to-
one relationship, a concept rooted in Koch’s 
postulates. However, it was not fulfilled by 
smoking and lung cancer – smoking causes 
multiple diseases, including myocardial 
infarction, chronic obstructive lung disease, 
and bladder cancer. Therefore, not every 
criteria must be met for a factor to be con-
sidered a cause.

4.	 Temporality. This indispensable criterion 
implies the cause precedes the effect. For 
example, it must be shown that smoking 
comes before lung cancer. 

5.	 Biological gradient (dose-response). 
The risk of lung cancer increases with the 
amount of smoking – a strong criterion for 
causation – because it is unlikely that such 
a consistent dose-response relationship 
would occur by chance alone if there were 
no true cause-and-effect link. 

6.	 Plausibility. Is it biologically plausible that 
inhaling known carcinogens into your alve-
oli can cause cancer? Yes, it is. However, it 
is important to recognize that our under-
standing of many cause-and-effect relation-
ships is incomplete. A lack of current expla-
nation does not rule out a true biological 
connection.

7.	 Coherence. The cause-and-effect inter-
pretation should align with what we know 
about the disease. For example, cigarette 
sales and lung cancer rates have shown 
a strong association, accounting for the 
expected time lag in cancer development.

8.	 Experiment. Removing the cause should 
reduce the effect. Smoking cessation low-
ers the risk of developing lung cancer.

9.	 Analogy. If experimental animals develop 
lung cancer when exposed to cigarette 
smoke, it is reasonable to infer that humans 
might as well, based on this similarity.

Conclusion
Evidence goes beyond pathophysiology and 
expert opinion, with its strength depending 
on study design. The results of well-designed 
randomized controlled trials offer more robust 
evidence than a case report, case series, or an 
observational study. The choice of statistical 
tests should align with the study design and 
data type. Common challenges include bias 
and confounding, among others. Most associa-
tions are not causal, and Austin Bradford Hill’s 
criteria provide a useful framework for evaluat-
ing causation. 
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1.	 What is the mean of the following num-
bers: 1, 2, 3, 4, 7, 8?

	 The sum of these 6 numbers (1, 2, 3, 4, 
7, 8) is 25. The mean is 25/6 = 4.167

2.	 What is the median of the following 
numbers: 2, 5, 9, 16, 22, 25?

	 The median of these numbers (2, 5, 9, 
16, 22, 25) is the average of the middle 
2 numbers (9 and 16). Therefore, the 
median is (9 + 16)/2 = 12.5

3.	 If the mean systolic blood pressure of 
all patients in your practice is 130 mmHg 
and the standard deviation is 6 mmHg, 
what percent of your practice would you 
expect to have systolic pressures above 
142 mmHg assuming the systolic pres-
sures follow a normal distribution?

	 Since the population standard deviation 
is 6 mmHg, and the mean is 130, 142 is 
2 standard deviations above the mean. 
In a normal distribution, 95% of values 
are within 2 standard deviations of the 
mean (2.5% above and 2.5% below 2 
standard deviations).

4.	 Suppose you record the blood pressures 
of the next 9 patients in your office and 
calculate the mean systolic pressure of 
that sample to be 134 mmHg. Would that 
mean surprise you? What is the standard 
error of the mean for this random sam-
ple of 9?

	 For a sample size of 9, the standard 
error of the mean (SEM) is the popu-
lation standard deviation (6) divided 
by the square root of the sample size 
(square root of 9 is 3). Therefore, the 
SEM is 6/3 = 2. Since 134 is 2 standard 
deviations above the mean, it would not 
be terribly surprising (P = 0.05).

5.	 What would the standard error of the 
mean be for a random sample of 36 of 
your patients?

	 For a sample of 36, the SEM would be 6/
(square root of 36). Therefore, the SEM 
for a random sample of 36 would be 1.0. 
Note that to cut the standard error in 
half (from 2 to 1), the sample size must 
increase 4 times (from 9 to 36).

Part 5: Descriptive Statistics Practice Questions and Answers
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